
Hardware Design for the Interpolation Filters of  

the VVC Standard Affine Motion Estimation 
 

Denis Maass, Murilo Perleberg, Vladimir Afonso, Luciano Agostini, Marcelo Porto  

Video Technology Research Group (ViTech), Group of Architectures and Integrated Circuits (GACI) 

Federal University of Pelotas (UFPel), Pelotas, RS, Brazil 

denismaass7@gmail.com, {mrperleberg, vafonso, agostini, porto}@inf.ufpel.edu.br 

 
Abstract—The interpolation filters used in the Affine Motion 

Estimation (AME) of the Versatile Video Coding (VVC) 

standard demand a large memory bandwidth and an intense 

computational effort. So, this work presents two different 

dedicated hardware implementations for the 15 interpolation 

filters used by the AME of the VVC standard. The first 

implementation adopts the use of full multiplicators, while the 

second implementation is a multiplierless approach, where the 

full multiplicators are replaced by adders and shift operations. 

The ASIC synthesis results for the TSMC 40nm standard cells 

demonstrate that the implementations using the shift-add 

method can achieve a decrease of 21% and 24% in total power 

dissipation and the number of gates respectively, in relation to 

the implementations using multiplicators. Moreover, the shift-

add filters implementations should be able of increasing the 

maximum operation frequency by 22%.  
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I. INTRODUCTION 

With the popularization of the internet and the spread of 
mobile devices, the demand for video content has been 
increasing year after year. However, due to the vast amount of 
data necessary to represent these videos, compression 
techniques are required to allow efficient storage and 
transmission, maintaining the quality, while dealing with 
constraints of power and time. Currently, the state-of-the-art 
in video compression is the Versatile Video Coding (VVC) 
standard. The VVC was in development since 2015 by the 
Motion Picture Expert Group (ISO/IEC MPEG) and the Video 
Coding Experts Group (ITU-T VCEG) [1], being firstly 
released in July 2020.  

To get efficient video coding, it is very important to 
explore temporal redundancies, that is, the similarity between 
two frames of the video. In this context, motion estimation 
(ME) is the main technique. The ME has been explored by 
almost all previous standards of video coding. However, in the 
VVC standard, the innovation is the integration of AME, 
which allows more flexibility in the prediction tool, adapting 
to non-translational movements, such as rotation and 
zooming, describing more effectively the motion in natural 
videos [2].  

Inside the AME, an important step is fractional 
interpolation, which consists of generating intermediate 
samples between the integer samples, once the motion 
between two frames is not limited to integer positions [3]. 
Using these tools, the VVC can reach up to 33% more coding 
efficiency compared to its predecessor's High-Efficiency 
Video Coding (HEVC) [1]. On the other hand, while the 
HEVC supports 1/4 fractional pixel accuracy, the VVC 
provides a 1/16 fractional pixel accuracy [4], meaning a 
considerable increase in the computational complexity and 
demanding a large memory bandwidth. Thus, the coding may 
take so much time that it makes it impossible to use software 
implementation of interpolation filters of the VVC for real-
time video applications. 

An approach to deal with the complexity problem is to 
perform the encoding using dedicated hardware accelerators. 
While in the software encoding the CPU performs all the 
processes, the hardware encoding uses a dedicated media 
processor, allowing the CPU to be free to do other tasks [5]. 
As result, the hardware approach can encode a video with very 
similar quality to the software approach, using much fewer 
computational and power resources, conditions that make this 
method appropriate for mobile applications [6] and to reach 
real-time processing. 

In this work, two different dedicated hardware 
architectures implementations were proposed and designed 
for the 15 interpolation filters used by the AME of the VVC 
standard. The two implementations were described in VHDL 
and synthesized in ASIC. The first implementation uses full 
multiplicators in the design of the 15 interpolation filters, 
while the second implementation replaces the full 
multiplicators with a shift-add circuit, resulting in a 
multiplierless approach. The ASIC synthesis results indicate 
that the shift-add architectures decrease by 21% and 24% the 
power dissipation and cell area, respectively, in relation to the 
implementation using full multiplicators. Preliminary results 
also show that the shift-add design should be able to increase 
the maximum operational frequency by 22%. 

II. THE VVC STANDARD 

Released in July 2020, the VVC video coding standard 
aims to improve the coding efficiency of HEVC as well as to 
support a wide variety of video applications, such as video 
with resolutions beyond the high definition, ultralow-delay 
streaming, and 360° immersive video [7]. To improve video 
compression, the VVC included a set of new tools and refined 
those already existent in the HEVC. Some of these tools are 
important to the scope of this work and will be detailed in the 
next subsections. Subsection II-A describes the AME, while 
subsection II-B describes the interpolation filters adopted 
inside the AME. 

A. Affine Motion Estimation 

The AME can recognize and represent other movements 
besides the translational ones represented by the traditional 
ME, such as zooming and rotation. The AME starts after the 
search that, in previously encoded frames, finds the most 
similar candidate block to the block being coded. Once found, 
the block with the best match is mapped by a set of Motion 
Vectors (MVs) that represents the movement executed by the 
reference block in relation to the current block [1]. The AME 
is applied in the Coding Unit (CU) level in blocks with a size 
of at least 16x16 samples and can use a 4 or 6 parameters 
model. The 4-parameter model uses the MV of the two control 
points which are located at the top-left and top-right corners 
of the CU, while the 6-parameter model uses MV from three 
control points, which are located at the top-left, top-right, and 
bottom-left corners [6], as shown in Fig. 1. 



To reconstruct a CU coded with the AME, the CU is split 
into subblocks of 4x4 sample size, and each subblock is 
individually reconstructed. For that, the MV of the central 
sample of the subblock is inherited from the 4 or 6 parameters, 
and this MV will be used by all samples of the subblock [1]. 
However, as mentioned before, the motion between two 
temporal-neighbor frames may not be between the entire 
distance of two samples, becoming necessary the use of sub-
pixel samples, which are provided by the interpolation filters. 

B. Interpolation Filters 

To generate the fractional samples to reconstruct a 4x4 
subblock, and consequently reconstruct a CU coded with the 
AME, the VVC uses a set of 15 filters. This set of filters 
reaches a fractional pixel resolution of 1/16 [7], which means 
that between two horizontal neighbor pixels are interpolated 
15 new horizontal fractional samples, and the same occurs 
between vertical neighbor pixels. Besides that, are calculated 
15x15=225 new diagonal fractional samples, totalizing 255 
samples interpolated for one integer sample [4]. The integer 
pixels and filters used to generate each fractional sample are 
shown in Fig. 2. Note that from all 255 fractional samples 
presented in Fig. 2, only one fractional sample pointed by the 
MV of the central samples of the subblock are required to 
reconstruct the 4x4 subblock. 

The interpolation filters used in the interpolation process 
of 4x4 subblocks are of 6-taps. Therefore, every interpolation 
filter needs 6 input samples to generate its fractional sample. 
The horizontal fractional samples are interpolated using 
integer pixels from horizontally neighbors, as exemplified in 
Fig. 3. The vertical fractional samples are obtained from 
integer pixels of the vertical neighbors. Finally, the diagonal 

fractional samples are calculated using the horizontal 
fractional samples previously calculated [3].  

The interpolation process occurs by computing the 
weighted average of the input samples (𝐴−2 ~ 𝐴3) by different 
coefficients. So, (1) gives the equation for one generic 
interpolation filter (FN), where 𝑐𝑥 represents the coefficients 
for filtering and 𝐴𝑥  means the input samples. Due to the 
rounding properties for the weighted average, it is observed in 
the reference software of the VVC encoder, the VVC Test 
Model (VTM), that besides the weighted sum of entries, there 
is an offset of 32, and after all sums, the obtained value is 
divided by 64, which is the sum of all coefficients of the filters, 
resulting in the final weighted average, which is the value of 
the fractional sample generated.  

The value of those coefficients is different for each of the 
15 interpolation filters and varies according to the distance 
between the input samples and the fractional sample to be 
generated. The coefficients of each input sample for the 15 
interpolation filters are shown in Table I. Then, as an example, 
the final equation of the F8 filter is given by (2). The equation 
of all others filters follows the same format, but adopting their 
own coefficients, as given in Table I. 

III. INTERPOLATION FILTERS HARDWARE DESIGN  

In this work, two different implementations of dedicated 
hardware architectures for the 15 interpolation filters of the 
AME of the VVC standard are being proposed and designed. 
The first implementation used full multiplicators, and the 
second is a multiplierless approach that uses only shift-add 
circuits in the architecture of those 15 filters. As this work 
presents the first hardware implementation of these filters, the 
comparison of these two implementations provides 
interesting results of its design space exploration. 

In a high-level view, both architecture models receive as 
the input 6 samples of 10-bit, which are weighted accordingly 
to the equation of the respective filter, as result, the output of 
the filter is a 10-bit fractional sample. The match of sizes of 
the inputs and the output is made because some of the 
fractional outputs generated may be used as input for another 
filter. To ensure that the output sample is truly 10-bit size, a 

TABLE I. AFFINE FILTER COEFFICIENTS 

Filter C0 C1 C2 C3 C4 C5 

F1 1 -3 63 4 -2 1 
F2 1 -5 62 8 -3 1 
F3 2 -8 60 13 -4 1 
F4 3 -10 58 17 -5 1 
F5 3 -11 52 26 -8 2 
F6 2 -9 47 31 -10 3 
F7 3 -11 45 34 -10 3 
F8 3 -11 40 40 -11 3 
F9 3 -10 34 45 -11 3 
F10 3 -10 31 47 -9 2 
F11 2 -8 26 52 -11 3 
F12 1 -5 17 58 -10 3 
F13 1 -4 13 60 -8 2 
F14 1 -3 8 62 -5 1 
F15 1 -2 4 63 -3 1 

 

 
Fig. 1. The representation of the AME model: (a) 4-parameter and (b) 6-

parameter (Adapted from [1]). 

 
Fig. 2. Integer pixels and fractional samples (Adapted from [4]) 

 
Fig. 3. Samples used (𝐴𝑥) to obtain a horizontal fractional sample (F8)  

F8 = (3A−2 − 11A−1 + 40A0 + 40A1 − 11A2 + 3A3

+ 32) / 64 
(2) 

 

FN = (c0A−2 + c1A−1 + c2A0 + c3A1 + 𝑐4A2 + c5A3

+ 32) / 64 
(1) 

 



clipping procedure is performed before the output, where the 
most significant bit (the signal bit) and the 9 least significant 
bits to produce the final sample are concatenated. 

The next subsections will be used to describe in more 

detail the two implementations for the hardware of the 

interpolation filters. Subsection III-A describes the 

implementation using multiplicators, while subsection III-B 

presents the shift-add version. The description focuses on the 

implementation of the F8 filter, however, the procedure is 

very similar for all the other filters. 

A. Multiplicators Implementation 

This architecture is a direct application of the equation of 
the filter, where each operation (sum, multiplication, or 
division) is performed by a dedicated operator. The input 
samples are multiplied by their respective coefficients and 
then are all summed, jointly with the offset of 32. Finally, the 
division by 64 is made. 

Fig. 4 presents the architecture for the filter F8. As can be 
seen in Fig. 4, the architecture for this filter requires six full 
multiplicators of 10 bits which produce 20-bit outputs, they 
are all summed to the offset into a 23-bit size number, and 
then, are divided by a 23-bit divider. The other filters require 
the same number of operations, just differing from the 
coefficients adopted as input in the multiplicators. 

B. Shift-Add Implementation 

The shift-add implementation consists of restructuring the 
filter equation, decomposing its coefficients into a set of sums 
of power 2 values. Thus, every multiplier operation can be 
performed by adds and/or binary shifts. This multiplierless 
approach usually requires less hardware to be implemented. 
Since all the multiplications and the division are made by 
constants, and since the multipliers and divisions can be 
performed with bit shift operations, so, the shift-add 
implementation replaces the multiplicators by circuits with a 
set of sums and/or binary shifts. Then, the equation (2) can be 
rewritten as presented in (3), where each multiplication can be 
performed by accumulating the results from a set of left bit 
shifts. Finally, (3) was reorganized so that the operations that 
require the same bit shift were grouped. Thus, the 
multiplierless implementation of the equation of the filter F8 
can be represented as (4). 

Fig. 5 shows the architecture developed by applying the 
shift-add method for the F8 filter. Reorganizing the operations 
that require the same bit shift allows sharing operations 
between different multiplications. Thus, the architecture for 
the F8 filter requires four 10-bit subtractor operators, four bit-
shift operators, and seven adder operators, being one of 10 
bits, two of 11 bits, one of 13 bits, one of 16 bits, one of 17 
bits, and one of 18 bits. The developed architectures for the 
other filters followed the same optimization method to obtain 
shift-add implementation. Although, the number of operations 
performed for the other filters can have slight variations due 
to the differences in the filter coefficients. 

IV. SYNTHESIS RESULTS 

The 15 filter architectures were designed according to the 
two implementation methods previously presented and then 
the 30 filter architectures were described in VHDL and 
validated using the ModelSim tool. The architectures were 
synthesized to ASIC using the TSMC 40nm standard-cells 
library by using the Cadence RTL Compiler. All filters 
synthesis were made for a frequency of 100MHz, the 
minimum operating frequency to filter once each of the 
samples from a 1080p@30fps video. The obtained results, for 
each of the 15 filters, are presented in Table II. The area results 
consider the number of equivalent gates, considering the area 
of a NAND2 (0.9408mm2).  

As seen in Table II, when running at 100MHz, the filters 
designed with shift-add circuits show a decrease of up to 
21.56% in the total power dissipation and up to 24.60% in the 
number of gates in comparison with the multiplicators 
implementation. On average for the 15 filters, the shift-add 
architectures present a power reduction of 13.6% and require 
a number of gates 10% lower. These significant reductions 
occur by the replacement of the full multiplicators, which 
requires a set of adders and additional logic gates, for the shift-
add circuits. 

It is important to mention that this is the first hardware 
implementation of the AME interpolation filters of the VVC 
standard in the literature. So, it is impossible to provide a fair 
comparison with related works in this paper beyond the one 
presented over the two proposed implementations. 

A. Maximum Frequency 

A preliminary investigation of the maximum operating 
frequency of the two proposed implementations was also 
performed. These preliminary results were obtained for the 
architectures of the filter F8 when synthesized at their 
maximum frequency. The synthesis results are shown in Table 

 
Fig. 5. Shift-add architecture for the F8 filter 

 
Fig. 4. F8 filter architecture with the full multiplicators implementation 

𝐹8 = [(2 + 1)𝐴−2 − (8 + 2 + 1)𝐴−1 + 
(32 + 8)𝐴0 + (32 + 8)𝐴1 − 

(8 + 2 + 1)𝐴2 + (2 + 1)𝐴3 + 32]/64 
(3) 

  

𝐹8 = [(𝐴−2 − 𝐴−1 + 𝐴3 − 𝐴2) + 

(𝐴−2 − 𝐴−1 + 𝐴3 − 𝐴2) ≪ 1 + 

(𝐴0 − 𝐴−1 + 𝐴1 − 𝐴2) ≪ 3 + 

(𝐴0 + 𝐴1) ≪ 5 + 32] ≫ 6 

(4) 

 



III and indicated that the shift-add architecture is capable to 
run at a frequency of 1169 MHz, while the architecture 
implemented with multiplicators can achieve a maximum 
frequency of 951 MHz. This means that the shift-add 
architecture of the F8 filter was able to reach a frequency 
22.9% higher. The results of total power dissipation and the 
total number of gates are also shown in Table III. Note that 
area and power dissipation results were increased if compared 
to those in Table II. It happens since to achieve higher 
frequencies new syntheses are necessary, and faster cells must 
be chosen, which demands more power and area resources. 

V. CONCLUSIONS 

This work presents two different dedicated hardware 
implementations of the interpolation filters of the AME of the 
VVC standard. The first implementation of the filter uses full 
multiplicators, and the second one is a multiplierless version 
only implementing shift-adds circuits. The 15 filters were 
designed considering both approaches, described in VHDL, 
and synthesized to ASIC with a TSMC 40nm standard-cells 
library. The synthesis results show that, at the same frequency, 
the shift-add architectures require up to 21.56% and 24.60% 
less power and gates, respectively. Besides that, the shift-add 
architecture can achieve a maximum frequency 22.9% higher 
than the multiplicators implementation. In future works, it is 
intended to join all the 15 filters in an interpolation 
architecture, being able to generate all the 255 fractional 
samples necessary to perform the AME. 
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TABLE III. SYNTHESIS RESULTS OF F8 FILTER ARCHITECTURES 

AT THEIR MAXIMUM FREQUENCY 

 Multiplicators 

Implementation 

Shift-Add 

Implementation 

Δ Gains 

(%) 

Frequency (MHz) 951.47 1169.59 22.9 

Power (mW) 2.139 2.076 -2.9 

Area (gates) 1861 1623 -12.8 

 

 

TABLE II. SYNTHESIS RESULTS PERFORMED FOR 100MHZ 

Filter 

Full Multiplicators implementation Shift-Add Implementation Δ Gains (%) 

Leakage 

Power (mW) 

Dynamic 

Power (mW) 

Area 

(gates) 

Leakage  

Power (mW) 

Dynamic 

Power (mW) 

Area 

(gates) 

Leakage 

Power  

Dynamic 

Power  

Total 

Power  
Area   

F1 0.015 0.207 916 0.014 0.182 876 -6.67 -12.08 -11.71 -4.35 

F2 0.016 0.222 984 0.014 0.190 893 -12.50 -14.41 -14.29 -9.30 

F3 0.015 0.211 912 0.016 0.191 942 6.67 -9.48 -8.41 3.22 

F4 0.020 0.290 1206 0.018 0.237 1053 -10.00 -18.28 -17.74 -12.71 

F5 0.017 0.270 1109 0.019 0.264 1114 11.76 -2.22 -1.39 0.48 

F6 0.020 0.283 1211 0.017 0.232 1028 -15.00 -18.02 -17.82 -15.11 

F7 0.022 0.312 1300 0.018 0.259 1086 -18.18 -16.99 -17.07 -16.48 

F8 0.021 0.299 1247 0.015 0.236 940 -28.57 -21.07 -21.56 -24.60 

F9 0.022 0.319 1318 0.018 0.257 1086 -18.18 -19.44 -19.35 -17.59 

F10 0.020 0.285 1216 0.017 0.232 1028 -15.00 -18.60 -18.36 -15.48 

F11 0.018 0.268 1134 0.018 0.253 1089 0.00 -5.60 -5.24 -4.01 

F12 0.020 0.274 1188 0.018 0.239 1076 -10.00 -12.77 -12.59 -9.42 

F13 0.014 0.211 911 0.015 0.194 933 7.14 -8.06 -7.11 2.42 

F14 0.017 0.227 1003 0.014 0.190 893 -17.65 -16.30 -16.39 -11.02 

F15 0.015 0.198 913 0.014 0.183 876 -6.67 -7.58 -7.51 -4.03 

Average 0.018 0.258 1105 0.016 0.223 994 -9.93 -13.85 -13.60 -10.00 

 


