
Hardware Design for the Interpolation Filters of

the VVC Standard Affine Motion Estimation

Denis Maass, Murilo Perleberg, Vladimir Afonso, Luciano Agostini, Marcelo Porto

Video Technology Research Group (ViTech), Group of Architectures and Integrated Circuits (GACI)

Federal University of Pelotas (UFPel), Pelotas, RS, Brazil

denismaass7@gmail.com, {mrperleberg, vafonso, agostini, porto}@inf.ufpel.edu.br

Abstract—The interpolation filters used in the Affine Motion

Estimation (AME) of the Versatile Video Coding (VVC)

standard demand a large memory bandwidth and an intense

computational effort. So, this work presents two different

dedicated hardware implementations for the 15 interpolation

filters used by the AME of the VVC standard. The first

implementation adopts the use of full multiplicators, while the

second implementation is a multiplierless approach, where the

full multiplicators are replaced by adders and shift operations.

The ASIC synthesis results for the TSMC 40nm standard cells

demonstrate that the implementations using the shift-add

method can achieve a decrease of 21% and 24% in total power

dissipation and the number of gates respectively, in relation to

the implementations using multiplicators. Moreover, the shift-

add filters implementations should be able of increasing the

maximum operation frequency by 22%.

Keywords—Affine ME, VVC, Hardware, Interpolation Filters.

I. INTRODUCTION

With the popularization of the internet and the spread of
mobile devices, the demand for video content has been
increasing year after year. However, due to the vast amount of
data necessary to represent these videos, compression
techniques are required to allow efficient storage and
transmission, maintaining the quality, while dealing with
constraints of power and time. Currently, the state-of-the-art
in video compression is the Versatile Video Coding (VVC)
standard. The VVC was in development since 2015 by the
Motion Picture Expert Group (ISO/IEC MPEG) and the Video
Coding Experts Group (ITU-T VCEG) [1], being firstly
released in July 2020.

To get efficient video coding, it is very important to
explore temporal redundancies, that is, the similarity between
two frames of the video. In this context, motion estimation
(ME) is the main technique. The ME has been explored by
almost all previous standards of video coding. However, in the
VVC standard, the innovation is the integration of AME,
which allows more flexibility in the prediction tool, adapting
to non-translational movements, such as rotation and
zooming, describing more effectively the motion in natural
videos [2].

Inside the AME, an important step is fractional
interpolation, which consists of generating intermediate
samples between the integer samples, once the motion
between two frames is not limited to integer positions [3].
Using these tools, the VVC can reach up to 33% more coding
efficiency compared to its predecessor's High-Efficiency
Video Coding (HEVC) [1]. On the other hand, while the
HEVC supports 1/4 fractional pixel accuracy, the VVC
provides a 1/16 fractional pixel accuracy [4], meaning a
considerable increase in the computational complexity and
demanding a large memory bandwidth. Thus, the coding may
take so much time that it makes it impossible to use software
implementation of interpolation filters of the VVC for real-
time video applications.

An approach to deal with the complexity problem is to
perform the encoding using dedicated hardware accelerators.
While in the software encoding the CPU performs all the
processes, the hardware encoding uses a dedicated media
processor, allowing the CPU to be free to do other tasks [5].
As result, the hardware approach can encode a video with very
similar quality to the software approach, using much fewer
computational and power resources, conditions that make this
method appropriate for mobile applications [6] and to reach
real-time processing.

In this work, two different dedicated hardware
architectures implementations were proposed and designed
for the 15 interpolation filters used by the AME of the VVC
standard. The two implementations were described in VHDL
and synthesized in ASIC. The first implementation uses full
multiplicators in the design of the 15 interpolation filters,
while the second implementation replaces the full
multiplicators with a shift-add circuit, resulting in a
multiplierless approach. The ASIC synthesis results indicate
that the shift-add architectures decrease by 21% and 24% the
power dissipation and cell area, respectively, in relation to the
implementation using full multiplicators. Preliminary results
also show that the shift-add design should be able to increase
the maximum operational frequency by 22%.

II. THE VVC STANDARD

Released in July 2020, the VVC video coding standard
aims to improve the coding efficiency of HEVC as well as to
support a wide variety of video applications, such as video
with resolutions beyond the high definition, ultralow-delay
streaming, and 360° immersive video [7]. To improve video
compression, the VVC included a set of new tools and refined
those already existent in the HEVC. Some of these tools are
important to the scope of this work and will be detailed in the
next subsections. Subsection II-A describes the AME, while
subsection II-B describes the interpolation filters adopted
inside the AME.

A. Affine Motion Estimation

The AME can recognize and represent other movements
besides the translational ones represented by the traditional
ME, such as zooming and rotation. The AME starts after the
search that, in previously encoded frames, finds the most
similar candidate block to the block being coded. Once found,
the block with the best match is mapped by a set of Motion
Vectors (MVs) that represents the movement executed by the
reference block in relation to the current block [1]. The AME
is applied in the Coding Unit (CU) level in blocks with a size
of at least 16x16 samples and can use a 4 or 6 parameters
model. The 4-parameter model uses the MV of the two control
points which are located at the top-left and top-right corners
of the CU, while the 6-parameter model uses MV from three
control points, which are located at the top-left, top-right, and
bottom-left corners [6], as shown in Fig. 1.

To reconstruct a CU coded with the AME, the CU is split
into subblocks of 4x4 sample size, and each subblock is
individually reconstructed. For that, the MV of the central
sample of the subblock is inherited from the 4 or 6 parameters,
and this MV will be used by all samples of the subblock [1].
However, as mentioned before, the motion between two
temporal-neighbor frames may not be between the entire
distance of two samples, becoming necessary the use of sub-
pixel samples, which are provided by the interpolation filters.

B. Interpolation Filters

To generate the fractional samples to reconstruct a 4x4
subblock, and consequently reconstruct a CU coded with the
AME, the VVC uses a set of 15 filters. This set of filters
reaches a fractional pixel resolution of 1/16 [7], which means
that between two horizontal neighbor pixels are interpolated
15 new horizontal fractional samples, and the same occurs
between vertical neighbor pixels. Besides that, are calculated
15x15=225 new diagonal fractional samples, totalizing 255
samples interpolated for one integer sample [4]. The integer
pixels and filters used to generate each fractional sample are
shown in Fig. 2. Note that from all 255 fractional samples
presented in Fig. 2, only one fractional sample pointed by the
MV of the central samples of the subblock are required to
reconstruct the 4x4 subblock.

The interpolation filters used in the interpolation process
of 4x4 subblocks are of 6-taps. Therefore, every interpolation
filter needs 6 input samples to generate its fractional sample.
The horizontal fractional samples are interpolated using
integer pixels from horizontally neighbors, as exemplified in
Fig. 3. The vertical fractional samples are obtained from
integer pixels of the vertical neighbors. Finally, the diagonal

fractional samples are calculated using the horizontal
fractional samples previously calculated [3].

The interpolation process occurs by computing the
weighted average of the input samples (𝐴−2 ~ 𝐴3) by different
coefficients. So, (1) gives the equation for one generic
interpolation filter (FN), where 𝑐𝑥 represents the coefficients
for filtering and 𝐴𝑥 means the input samples. Due to the
rounding properties for the weighted average, it is observed in
the reference software of the VVC encoder, the VVC Test
Model (VTM), that besides the weighted sum of entries, there
is an offset of 32, and after all sums, the obtained value is
divided by 64, which is the sum of all coefficients of the filters,
resulting in the final weighted average, which is the value of
the fractional sample generated.

The value of those coefficients is different for each of the
15 interpolation filters and varies according to the distance
between the input samples and the fractional sample to be
generated. The coefficients of each input sample for the 15
interpolation filters are shown in Table I. Then, as an example,
the final equation of the F8 filter is given by (2). The equation
of all others filters follows the same format, but adopting their
own coefficients, as given in Table I.

III. INTERPOLATION FILTERS HARDWARE DESIGN

In this work, two different implementations of dedicated
hardware architectures for the 15 interpolation filters of the
AME of the VVC standard are being proposed and designed.
The first implementation used full multiplicators, and the
second is a multiplierless approach that uses only shift-add
circuits in the architecture of those 15 filters. As this work
presents the first hardware implementation of these filters, the
comparison of these two implementations provides
interesting results of its design space exploration.

In a high-level view, both architecture models receive as
the input 6 samples of 10-bit, which are weighted accordingly
to the equation of the respective filter, as result, the output of
the filter is a 10-bit fractional sample. The match of sizes of
the inputs and the output is made because some of the
fractional outputs generated may be used as input for another
filter. To ensure that the output sample is truly 10-bit size, a

TABLE I. AFFINE FILTER COEFFICIENTS

Filter C0 C1 C2 C3 C4 C5

F1 1 -3 63 4 -2 1
F2 1 -5 62 8 -3 1
F3 2 -8 60 13 -4 1
F4 3 -10 58 17 -5 1
F5 3 -11 52 26 -8 2
F6 2 -9 47 31 -10 3
F7 3 -11 45 34 -10 3
F8 3 -11 40 40 -11 3
F9 3 -10 34 45 -11 3
F10 3 -10 31 47 -9 2
F11 2 -8 26 52 -11 3
F12 1 -5 17 58 -10 3
F13 1 -4 13 60 -8 2
F14 1 -3 8 62 -5 1
F15 1 -2 4 63 -3 1

Fig. 1. The representation of the AME model: (a) 4-parameter and (b) 6-

parameter (Adapted from [1]).

Fig. 2. Integer pixels and fractional samples (Adapted from [4])

Fig. 3. Samples used (𝐴𝑥) to obtain a horizontal fractional sample (F8)

F8 = (3A−2 − 11A−1 + 40A0 + 40A1 − 11A2 + 3A3

+ 32) / 64
(2)

FN = (c0A−2 + c1A−1 + c2A0 + c3A1 + 𝑐4A2 + c5A3

+ 32) / 64
(1)

clipping procedure is performed before the output, where the
most significant bit (the signal bit) and the 9 least significant
bits to produce the final sample are concatenated.

The next subsections will be used to describe in more

detail the two implementations for the hardware of the

interpolation filters. Subsection III-A describes the

implementation using multiplicators, while subsection III-B

presents the shift-add version. The description focuses on the

implementation of the F8 filter, however, the procedure is

very similar for all the other filters.

A. Multiplicators Implementation

This architecture is a direct application of the equation of
the filter, where each operation (sum, multiplication, or
division) is performed by a dedicated operator. The input
samples are multiplied by their respective coefficients and
then are all summed, jointly with the offset of 32. Finally, the
division by 64 is made.

Fig. 4 presents the architecture for the filter F8. As can be
seen in Fig. 4, the architecture for this filter requires six full
multiplicators of 10 bits which produce 20-bit outputs, they
are all summed to the offset into a 23-bit size number, and
then, are divided by a 23-bit divider. The other filters require
the same number of operations, just differing from the
coefficients adopted as input in the multiplicators.

B. Shift-Add Implementation

The shift-add implementation consists of restructuring the
filter equation, decomposing its coefficients into a set of sums
of power 2 values. Thus, every multiplier operation can be
performed by adds and/or binary shifts. This multiplierless
approach usually requires less hardware to be implemented.
Since all the multiplications and the division are made by
constants, and since the multipliers and divisions can be
performed with bit shift operations, so, the shift-add
implementation replaces the multiplicators by circuits with a
set of sums and/or binary shifts. Then, the equation (2) can be
rewritten as presented in (3), where each multiplication can be
performed by accumulating the results from a set of left bit
shifts. Finally, (3) was reorganized so that the operations that
require the same bit shift were grouped. Thus, the
multiplierless implementation of the equation of the filter F8
can be represented as (4).

Fig. 5 shows the architecture developed by applying the
shift-add method for the F8 filter. Reorganizing the operations
that require the same bit shift allows sharing operations
between different multiplications. Thus, the architecture for
the F8 filter requires four 10-bit subtractor operators, four bit-
shift operators, and seven adder operators, being one of 10
bits, two of 11 bits, one of 13 bits, one of 16 bits, one of 17
bits, and one of 18 bits. The developed architectures for the
other filters followed the same optimization method to obtain
shift-add implementation. Although, the number of operations
performed for the other filters can have slight variations due
to the differences in the filter coefficients.

IV. SYNTHESIS RESULTS

The 15 filter architectures were designed according to the
two implementation methods previously presented and then
the 30 filter architectures were described in VHDL and
validated using the ModelSim tool. The architectures were
synthesized to ASIC using the TSMC 40nm standard-cells
library by using the Cadence RTL Compiler. All filters
synthesis were made for a frequency of 100MHz, the
minimum operating frequency to filter once each of the
samples from a 1080p@30fps video. The obtained results, for
each of the 15 filters, are presented in Table II. The area results
consider the number of equivalent gates, considering the area
of a NAND2 (0.9408mm2).

As seen in Table II, when running at 100MHz, the filters
designed with shift-add circuits show a decrease of up to
21.56% in the total power dissipation and up to 24.60% in the
number of gates in comparison with the multiplicators
implementation. On average for the 15 filters, the shift-add
architectures present a power reduction of 13.6% and require
a number of gates 10% lower. These significant reductions
occur by the replacement of the full multiplicators, which
requires a set of adders and additional logic gates, for the shift-
add circuits.

It is important to mention that this is the first hardware
implementation of the AME interpolation filters of the VVC
standard in the literature. So, it is impossible to provide a fair
comparison with related works in this paper beyond the one
presented over the two proposed implementations.

A. Maximum Frequency

A preliminary investigation of the maximum operating
frequency of the two proposed implementations was also
performed. These preliminary results were obtained for the
architectures of the filter F8 when synthesized at their
maximum frequency. The synthesis results are shown in Table

Fig. 5. Shift-add architecture for the F8 filter

Fig. 4. F8 filter architecture with the full multiplicators implementation

𝐹8 = [(2 + 1)𝐴−2 − (8 + 2 + 1)𝐴−1 +
(32 + 8)𝐴0 + (32 + 8)𝐴1 −

(8 + 2 + 1)𝐴2 + (2 + 1)𝐴3 + 32]/64
(3)

𝐹8 = [(𝐴−2 − 𝐴−1 + 𝐴3 − 𝐴2) +

(𝐴−2 − 𝐴−1 + 𝐴3 − 𝐴2) ≪ 1 +

(𝐴0 − 𝐴−1 + 𝐴1 − 𝐴2) ≪ 3 +

(𝐴0 + 𝐴1) ≪ 5 + 32] ≫ 6

(4)

III and indicated that the shift-add architecture is capable to
run at a frequency of 1169 MHz, while the architecture
implemented with multiplicators can achieve a maximum
frequency of 951 MHz. This means that the shift-add
architecture of the F8 filter was able to reach a frequency
22.9% higher. The results of total power dissipation and the
total number of gates are also shown in Table III. Note that
area and power dissipation results were increased if compared
to those in Table II. It happens since to achieve higher
frequencies new syntheses are necessary, and faster cells must
be chosen, which demands more power and area resources.

V. CONCLUSIONS

This work presents two different dedicated hardware
implementations of the interpolation filters of the AME of the
VVC standard. The first implementation of the filter uses full
multiplicators, and the second one is a multiplierless version
only implementing shift-adds circuits. The 15 filters were
designed considering both approaches, described in VHDL,
and synthesized to ASIC with a TSMC 40nm standard-cells
library. The synthesis results show that, at the same frequency,
the shift-add architectures require up to 21.56% and 24.60%
less power and gates, respectively. Besides that, the shift-add
architecture can achieve a maximum frequency 22.9% higher
than the multiplicators implementation. In future works, it is
intended to join all the 15 filters in an interpolation
architecture, being able to generate all the 255 fractional
samples necessary to perform the AME.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Finance Code 001, and algo by FAPERGS and
CNPq Brazilian research support agencies.

REFERENCES

[1] P. Gonçalves. "Um esquema rápido baseado em aprendizado de
máquina para a predição interquadros do codificador de vídeo VVC,"
M.S. thesis, CC, UFPel, Pelotas, BR, 2021. [Online]. Available:
http://guaiaca.ufpel.edu.br/bitstream/prefix/7787/1/Dissertacao_Paulo
_Henrrik_Ribeiro_Goncalves.pdf

[2] L. Li et al., "An Efficient Four-Parameter Affine Motion Model for
Video Coding," in IEEE Transactions on Circuits and Systems for
Video Technology, vol. 28, no. 8, pp. 1934-1948, Aug. 2018. doi:
10.1109/TCSVT.2017.2699919.

[3] V. Afonso, H. Maich, L. Audibert, B. Zatt, M. Porto, L. Agostini, and
A. Susin, “View of Hardware Implementation for the HEVC Fractional
Motion Estimation Targeting Real-Time and Low-Energy,” Journal of
Integrated Circuits and Systems 2016, v. 11, n. 2, pp. 106-120, Aug. 1,
2016. doi: https://doi.org/10.29292/jics.v11i2.435.

[4] A. CanMert, E. Kalali and I. Hamzaoglu, "A Low Power Versatile
Video Coding (VVC) Fractional Interpolation Hardware," 2018
Conference on Design and Architectures for Signal and Image
Processing (DASIP), pp. 43-47, 2018. doi:
10.1109/DASIP.2018.8597040.

[5] J. Kufa and T. Kratochvil, "Software and hardware HEVC encoding,"
2017 International Conference on Systems, Signals and Image
Processing (IWSSIP), pp. 1-5, 2017. doi:
10.1109/IWSSIP.2017.7965585.

[6] R. Safin, E. Garipova, R. Lavrenov, H. Li, M. Svinin and E. Magid,
"Hardware and software video encoding comparison," 2020 59th
Annual Conference of the Society of Instrument and Control Engineers
of Japan (SICE), pp. 924-929, 2020. doi:
10.23919/SICE48898.2020.9240439.

[7] B. Bross et al., "Overview of the Versatile Video Coding (VVC)
Standard and its Applications," in IEEE Transactions on Circuits and
Systems for Video Technology, vol. 31, no. 10, pp. 3736-3764, Oct.
2021. doi: 10.1109/TCSVT.2021.3101953.

TABLE III. SYNTHESIS RESULTS OF F8 FILTER ARCHITECTURES

AT THEIR MAXIMUM FREQUENCY

 Multiplicators

Implementation

Shift-Add

Implementation

Δ Gains

(%)

Frequency (MHz) 951.47 1169.59 22.9

Power (mW) 2.139 2.076 -2.9

Area (gates) 1861 1623 -12.8

TABLE II. SYNTHESIS RESULTS PERFORMED FOR 100MHZ

Filter

Full Multiplicators implementation Shift-Add Implementation Δ Gains (%)

Leakage

Power (mW)

Dynamic

Power (mW)

Area

(gates)

Leakage

Power (mW)

Dynamic

Power (mW)

Area

(gates)

Leakage

Power

Dynamic

Power

Total

Power
Area

F1 0.015 0.207 916 0.014 0.182 876 -6.67 -12.08 -11.71 -4.35

F2 0.016 0.222 984 0.014 0.190 893 -12.50 -14.41 -14.29 -9.30

F3 0.015 0.211 912 0.016 0.191 942 6.67 -9.48 -8.41 3.22

F4 0.020 0.290 1206 0.018 0.237 1053 -10.00 -18.28 -17.74 -12.71

F5 0.017 0.270 1109 0.019 0.264 1114 11.76 -2.22 -1.39 0.48

F6 0.020 0.283 1211 0.017 0.232 1028 -15.00 -18.02 -17.82 -15.11

F7 0.022 0.312 1300 0.018 0.259 1086 -18.18 -16.99 -17.07 -16.48

F8 0.021 0.299 1247 0.015 0.236 940 -28.57 -21.07 -21.56 -24.60

F9 0.022 0.319 1318 0.018 0.257 1086 -18.18 -19.44 -19.35 -17.59

F10 0.020 0.285 1216 0.017 0.232 1028 -15.00 -18.60 -18.36 -15.48

F11 0.018 0.268 1134 0.018 0.253 1089 0.00 -5.60 -5.24 -4.01

F12 0.020 0.274 1188 0.018 0.239 1076 -10.00 -12.77 -12.59 -9.42

F13 0.014 0.211 911 0.015 0.194 933 7.14 -8.06 -7.11 2.42

F14 0.017 0.227 1003 0.014 0.190 893 -17.65 -16.30 -16.39 -11.02

F15 0.015 0.198 913 0.014 0.183 876 -6.67 -7.58 -7.51 -4.03

Average 0.018 0.258 1105 0.016 0.223 994 -9.93 -13.85 -13.60 -10.00

